
Modern valence bond theory 

J. Gerratt,a D. L. Cooper,b P. B. Karadakovc and M. Raimondid 
a School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS8 ITS  

c' Chemistry Department, University of Surrey, Guildford, UK GU2 5 X H  
d Dipartimento di Chimica Fisica ed Elettrochimica and Centro del CNR per lo studio delle relazioni tra struttura e 
la reattivitci chimica, Universita di Milano, Via Golgi 19, 20133 Milano, Italy 

Department of Chemistry, University of Liverpool, PO Box 147, Liverpool, UK L69 3BX 

The spin-coupled (SC) theory of molecular electronic 
structure is introduced as the modern development of 
classical valence bond (VB) theory. Various important 
aspects of the SC wave function are described. Attention is 
particularly focused on the construction and properties of 
different sets of N-electron spin functions in different spin 
bases, such as the Kotani, Rumer and Serber. Applications of 
the SC description to a range of different kinds of chemical 
problems are presented, beginning with simple examples: the 
H2 and CH4 molecules. This is followed by the description 
offered by the SC wave function of more complex situations 
such as the insertion reaction of H2 into CH2(lA1), the 
phenomenon of hypervalence as displayed by molecules 
such as diazomethane, CH2N2, SF6 and XeF2. The SC 

description of the ground and excited states of benzene is 
briefly surveyed. This is followed by the SC description of 
antiaromatic systems such as C4H4 and related molecules. 

1 Introduction 
The description of the behaviour of electrons in molecules 
involves the application of quantum mechanics to very complex 
systems. Our ultimate objective is not simply to confirm 
theoretically what we already know from experiment. This 
merely assures us that quantum mechanics is correct. What we 
seek is much more: we seek insight into the behaviour of the 
electrons in a molecule, an explanation of the formation of 
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chemical bonds, the characteristics of such bonds, their 
strength, type, how they form and how they break. 

However, one should not lose sight of the fact that a 
description, if it is to carry any conviction, must also provide 
reliable numerical results which, in addition, must be capable of 
refinement if one so wishes. 

The solutions to these problems are not simple, nor even 
unique. Quite certainly, no answers of much value are 
obtainable by straightforward application of the considerable 
computing power now available to find some kind of numerical 
solution to the Schrodinger equation. Instead the problem 
remains with ourselves and as a result-unsurprisingly- 
several different approaches have been tried. 

Over the last forty or more years, the most fruitful approach 
has seemed to be the molecular orbital (MO) or self-consistent 
field (SCF) approach, in spite of the fact that the MO wave 
function does not describe correctly even the most basic of 
chemical processes: the breaking of a chemical bond. Never- 
theless, many developments have flowed from the MO 
approach, some of them of great conceptual importance, such as 
the rules governing the conservation of orbital symmetry in 
pericyclic reactions,’ others of a technical nature which allow us 
to progress to more complex wave functions in which electronic 
correlation effects missing from the SCF approach (including 
those which are responsible for providing a correct description 
of bond breaking) are taken into account. This last is the method 
of configuration interaction (CI method), which has now 
reached a stage where ca. 108 or 109 configurations can be 
handled by various computer codes. Sophisticated extensions of 
the SCF method, such as the multiconfigurational SCF 
(MCSCF) approach and the ‘complete active space SCF’ 
(CASSCF) approach, have been developed and these are 
embodied in highly efficient computer codes, such as 
GAUSSIAN96, GAMESS, MOLPRO, MOLCAS and other 
packages which are widely available. 

While these techniques have benefited from several genera- 
tions of development work by many talented research workers 
to produce codes that must surely be close to optimal for scalar, 
vector- and even parallel-processing machines, the effect of the 
large numbers of configurations, which are inevitably involved, 
seriously affects our vital chemical and physical insight into the 
problem. 

More recently, density functional theory (DFT) a technique 
that has been in use for many years by the solid state physics 
community (see e .g .  ref. 7), has caught the attention of many 
quantum chemists.8 A great deal of development work has been 
carried out in recent times, as is obvious to anyone who attends 
quantum chemistry conferences, both nationally and interna- 
tionally. DFT clearly has a number of advantages as compared 
to the ab initio techniques based upon MO theory mentioned 
above, but questions concerning the foundations of DFT, 
particularly the origin of the all-important exchange correlation 
potential, remain and have indeed become more urgent. 

Concurrent with the introduction of MO theory and its 
variants, is the theory of Heitler and London, or valence bond 
(HL or VB) theory. In fact, it was Heitler and London who first 
showed convincingly that the explanation of the strength of 
covalent bonding lay with quantum theory.2 Just as important, 
was the clarity of the description offered by this approach. In 
particular, the HL theory identifies the ‘exchange effect’ as the 
fundamental phenomenon responsible for those properties 
which we associate with a covalent chemical bond: its 
capability of holding together two electrically neutral atoms, 
valency itself, the saturation of valency and the idea of the 
directonality of chemical bonds; concepts which lie at the very 
heart of chemistry. On the basis of these ideas, Heitler and his 
students were able to produce a compelling explanation, at least 
at a qualitative and even at a semi-quantitative level, of many, 
if not most, aspects of chemical b ~ n d i n g . ~ ? ~  

Heisenberg further showed that this very same approach is 
crucial to the understanding of the many different forms of 

magnetism. To this day, the Heisenberg theory remains the only 
explanation of this central phenomenon of the physics of 
condensed matter. 

It would therefore seem natural for VB theory to have 
received most attention and development effort. For a short 
time, it did so. However, the origin of the exchange effect lies 
in the overlap between the wave functions of the participating 
atoms. This overlap, or non-orthogonality, between the relevant 
atomic wave functions has been the source of serious technical 
difficulties in the wide application of the Heitler-London 
approach. Such problems remained until new algorithms 
implemented on modern workstations with large memory, 
extensive disk storage and high speed I/O, effectively overcame 
them. 

An important extension to the HL theory was the introduction 
of ‘ionic structures’ into the wave function, i.e. the introduction 
of chemical structures in which the distribution of the electrons 
is such that two or more of the participating atoms bear formal 
positive and negative charges. Nevertheless, the introduction of 
ionic structures gives rise to severe problems, not least from the 
interpretational point of view. Even in the simplest case of H2, 
in order to obtain reasonable quantitative accuracy, it is crucial 
to add to the original Heitler-London (covalent) wave function 
eqn. (1.1): 

yc .- {@lsA(rl)@lSB(r2) +@lSB(rl)@lSA(r2)} 
C(a1C32 - B1a2>, (1.1) 

ionic structures of the form eqn (1.2): 

yl - { @lSA(rl)@lSA(r2) + @lSB(rl)@lSB(r2) 1 
C ( a 1 8 2  - P1a21, (1.2) 

giving as the total wave function for the H2 molecule a linear 
combination of wave functions (1.1) and (1.2): (1.3). 

Y,,, = C’Y, + C*Y,. (1.3) 
Here @lsA (rl) and @IsB (r2) denote 1s-like orbitals for electrons 
1 or 2, centred on hydrogen atoms A or B. Coefficient C2 is 
small but by no means negligible, C2/C1 = 0.25 for H2 near its 
equilibrium geometry. 

We are thus invited to view the H2 molecule, which as far as 
every chemist is concerned, is quintessentially covalent, as a 
resonance mixture between a covalent contribution, represented 
by wave function (l . l) ,  and an ionic part, represented by wave 
function (1.2), a physical picture which flies in the face of one’s 
every chemical instinct. 

For larger molecules, many more ionic structures can be 
formed. From a chemical perspective, most of them undoub- 
tedly appear rather unlikely if not extraordinary. Nevertheless, 
this mode of description is still widely used in a number of 
contemporary texts in inorganic and organic chemistry (see e .g .  
ref. 5).  But as the number of valence electrons increases, the 
possible number and type of ionic structures grows to such an 
extent as to obscure the original clarity of the VB description. 

However, in organic chemistry, there are some situations in 
which ionic structures play an altogether more positive role. For 
example, resonance between covalent and ionic structures 
provides a direct explanation of the ortho-/para- or meta- 
directing properties of different substituents of a benzene ring 
under electrophilic attack by various substituents. There is no 
doubt that still today, organic chemists, at least in the privacy of 
their laboratories, find that this explanation is the simplest and 
most satisfying. 

However, in a remarkably under-valued paper, Coulson and 
Fischer,6 using the H2 molecule as a simple example, showed 
that the ionic structures express nothing more than the 
deformation of the atomic orbitals that occurs when they 
participate in chemical bonds. They showed that wave function 
(1.3) can be rewritten as eqn. (1.4), 

q t o t  = @A(rl)@B(r2) -k @B(rl)@A(r2) 1 f l ( a l (32  - Bla2>, 
( 1.4) 
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which is precisely of the form of the original HL function, but 
where the orbitals @A and @*, instead of simply being atomic, 
are now (in unnormalized form): eqns. ( I  .5) and (1.6) 

@A = @isA + W i s g ,  

@B = $isg + h+is.A 

(1 5 )  

(1.6) 

and 

the mixing parameter h being the same as coefficient C2 in 
function (1.3).1- Note that orbitals @A and @B overlap: eqn. 
(1.7). 

(@A I @B) = A A B  (1.7) 
Thus we see that in cases such as this, the occurrence of ionic 
structures does in fact do no more than to allow the original 
atomic orbitals to delocalize somewhat into the neighbouring 
atoms as the molecule forms, which is of course perfectly 
reasonable. As the internuclear distance R increases, h -+ 0 and 
the orbitals revert to pure atomic form. 

Wave function (1.3) or (1.4) contains ‘left-right’ correlation 
which is necessary for a correct description of the dissociation 
of the Hz molecule. It yields 85% of the observed value of D,, 
the binding energy of H2, compared to 77% for the Hartree- 
Fock or molecular orbital wave function. This is not the only 
form of electron correlation in H2. In particular, angular 
correlation about the internuclear axis is missing. But the type 
of ‘non-dynamic’ correlation present in wave function (1.4) 
ensures that molecular dissociation, however complex, is 
always correctly described. 

Generally speaking, the deformations of the atomic orbitals 
in a molecule are large or small, depending upon such factors as 
the type of chemical linkage (single, double, triple, aromatic or 
anti-aromatic), the disparity in the electronegativity of the 
atoms concerned and the bond length: in all cases, as the 
distance between the atoms becomes large, i.e. as the bond 
breaks, the deformation of the atomic orbitals decreases to zero, 
usually occurring quite suddenly at a critical internuclear 
distance, and the isolated atom form is regained. 

The passage from wave function (1.3) to (1.4) gives us a new 
perspective on the role of the ionic structures and suggests an 
entirely novel direction for constructing electronic wave 
functions for molecules, to which we now turn. 

2 Spin-coupled wave functions 
Generalization of the foregoing leads us to propose the 
following wave function for a molecular system: eqn (2.1) 

Y S C  = V S M  = d{ -. * v:,$1@2 . * .  @N@$@:M~ (2-1) 
which is known as a spin-coupled (SC) wave function. It 
incorporates a number of features which do not arise in MO- 
based wave functions and these are described below. 

In the following Section, the construction of spin functions 
@:,M will be briefly discussed and after this we shall be ready 
for a description of the physical interpretation of the spin- 
coupled wave function. 

Function (2.1) describes a system with a total number of 
electrons N,:  eqn. (2.1 .i). 

N ,  = 2nc + N .  (2.1 .i) 
Of these, 2nc electrons are ‘inactive’ or ‘core’ electrons, 
described by n, doubly occupied orbitals vl, v2, . . ., vn,. They 
are not considered to take part in the chemical process under 
study. In addition we have N ‘active’ or ‘valence’ electrons, 
which are the objects of our investigation. They are described by 
N distinct, singly occupied orbitals @ I ,  $2, . . . @p, . . . @N. These 
orbitals are non-orthogonal, i.e. they overlap: eqn. (2.l.ii). 

(+p I @v) = A p v  (2.1 .ii) 

They are determined in the familiar way as linear combinations 
of basis functions (approximate atomic orbitals) X,, chosen 
beforehand and sited on all the atomic nuclei in the molecule. 
Thus: eqn. (2.2) 

m 

p=l 

where rn is the total number of basis functions. The coefficients 
cpp are determined by minimising the total energy of the system 
E ,  as we shall see. Note that ACLp = 1, i.e. the orbitals are 
normalised. 

The core or inactive orbitals vr are similarly determined as 
linear combinations of basis functions, eqn. (2.3), 

m 

p=l 

but with the added proviso that they are not only normalised, but 
are also orthogonal to one another: eqn. (2.4). 

(2.4) 

This property of the core orbitals simplifies many of the 
subsequent formulas considerably and may always be imposed 
without changing the form of the total wave function (2.1). Note 
that in addition there is a further simplification: The core 
orbitals vl may always be taken to be orthogonal to the active 
orbitals @p, again without changing the form of our assumed 
total wave function (2.1): eqn. (2.5). 

(2.5) 
These properties of the orbitals enable us to write the total 
energy in a compact form with a clear physical meaning, as we 
shall see. 

We now turn to the functions @;: and @!M which also 
appear in the total wave function (2.1) and play an important 
role in the theory. These are many-electron spin functions. The 
function 0i;lc describes the coupling of the spins of the 2nc 
electrons in the core. It has the simple form eqn. (2.5.i) 

0:; = G ( a 1 f i 2  - fila2) G(a3fi4 - B3a4) X ... (2.5.i) 

showing that the electron spins form n, pairs, each pair having 
a net spin of zero. Whenever there are orbitals that are doubly 
occupied, this spin function, known as the perfectly paired spin 
function, is the only one permitted by the Pauli principle. 

Function @KM is different. It is an N-electron spin function 
for the N active electrons. The subscripts indicate that the net 
spin of these electrons is S with z-component M .  A characteristic 
feature of the spin-coupled approach now appears. Since the N 
valence orbitals are singly occupied, there are several distinct 
ways of coupling the individual spins of the electrons to each 
other in order to form the required overall resultant spin S. This 
number is denoted byf; and is given by the simple formula (see 
ref. 9): eqn. (2.6). 

(@p 1 v,) = 0 (p, = 1,2, ..., N ;  i = 1,2, ..., n,) 

* * - x m a 2 n c  - 1C32nc - P2nc - 1a2nc)  

(2s + 1)N! 
f? = ($/+S+l)!(;N-S)! ‘ 

More will be said about the important topic of spin functions in 
the next Section. 

Thus spin function OFM occurring in eqn. (2.1) has the form 
of a linear combination of all the linearly independent spin 
functions, @gM,k, k = 1,2, ....., f?: eqn. (2.7). 

(2.7) 
7 Coefficient C ,  is equal to (1 + h2). k=l 
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The coefficients CSk are known as spin-coupling coefficients 
and are also determined by minimising the total energy. Their 
physical significance will be described shortly. 

The use of sets of spin functions as in (2.7) is one of the main 
features of the spin-coupled approach. 

Finally the operator SQ stands for the antisymmetrising 
operator. It ensures that the entire function following in brackets 
{ ... } in eqn. (2.1) is antisymmetric, i.e. obeys the Pauli 
principle; that is when any pair of space and spin coordinates in 
the total wave function YsM are transposed, YsM changes 
sign. 

Wave function (2.1) incorporates a number of parameters that 
are to be optimised by minimising the total energy. It is useful 
at this stage to summarise these: 

There-are the coefficients cpp in eqn. (2.2) for the spin- 
coupled orbitals. Since the orbital index p ranges over the 
values 1 to N and the index for the basis functions, p ,  from 
1 to rn, there are Nrn such coefficients. They are not all 
independent, since it should be recalled that each orbital $p 

is normalised, a condition which, in effect, fixes one 
coefficient per orbital. 
Similar considerations apply to the coefficients clp (2.3) for 
the core orbitals, though in this case, the constraints of 
normalisation and orthogonality, eqn. (2.4), reduce the 
number of independent coefficients c,< considerably. 
In addition there are the f l  spin-coupling coefficients CSk, 

appearing in eqn. (2.7). However, we usually require that 
the total spin function be normalised: eqn. (2.7.i) 

(2.7 .i) (@s,m I @ S , M )  = 1, 
in which the angular brackets in this case (... I ...) denote 
integration over all spin coordinates. If the individual spin 
functions @gM,k are orthonormal (see Section 3): eqn. (2.8), 

then the spin coupling coefficients must satisfy eqn. (2.8.i), 
r N  p CSk = 1 (2.8 .i) 

k=l 

which shows that there are onlyfl - 1 independent parameters 

For two electrons, the spin-coupled wave function (2.1) 
reduces to wave function (1.4). Thus for N = 2, n, = 0 (there 
are no core orbitals), for total spin S = 0, there is only a single 
spin function 

@&= M a 1 P 2  - P1a2) (2.8. ii) 

CSk- 

= l), eqn. (2.8.ii), 

and (2.1) reduces to eqn. (2.9), 

y o 0  = S Q { ~ 1 0 2 @ & 1  
= {$1(r1)02(r2) + +1(r2)$2(r1) } W a 1 P z  - h a 2 1 7  (2.9) 

We now turn to the construction of the spin functions 
which is the same as wave function (1.4). 

@&4. k' 

3 Construction and properties of spin functions 

There is a very large number of ways of constructing the 
N-electron spin functions @FM,k and in this section we provide 
an elementary survey of those which are the most common and 
have proved themselves to be the most useful in actual 
applications. Mathematical details are omitted. They may be 
found in e.g.  ref. 9, 10 or 20. The full physical significance of 
the different bases of spin functions and of transformations 
between them will become clear in the course of studying the 
various applications in this review. 

The most common method of constructing spin functions is 
simply by using the rules for coupling of angular momenta in 
quantum mechanics. Let us denote the spin function for electron 

i as 0,. This represents a state of the electron with spin s = + 
(which is of course the same for all electrons) and z-component 
rn, = q. The value of 0, may be +; or -;. In the former case, 
it is usual to denote the spin function as a, and in the latter as 

We begin from electron 1. It has a spin of 4. We then couple 
a second electron to it. According to the rules for coupling 
angular momentum, the possible values of the resultant spin of 
the two-electron system, S2, are 4 + f = 1 or ; - + = 0. To this 
we now add a third electron. If S2 = 0, then the value of the spin 
for the three-electron system, S3, must be f. However if S2 = 1, 
then the value of S3 may be 1 + + = +, or 1 - f = +. Thus for a 
three-electron system we see that there are two distinct ways of 
forming a spin function with net spin S = 4, distinguished by the 
value of S2. In the first case S2 = 1 and in the second, S2 = 0. 
In contrast there is only one way to form a three-electron 
function with net spin S = +. 

As the number of electrons increases, the possibilities 
multiply. If the net spin for N - 1 electrons is SN- 1, then the 
spin for N electrons can be SN + 4 or S, - f .  The process of 
constructing N-electron spin functions in this way can be 
conveniently represented by the so-called branching diagram in 
which the total number of electrons N is plotted against the net 
spin S. This is shown below in Fig. 1. Each path through the 

P I .  

712 4r 
512 3 l  

2 

312 

1 

1 /2 

0 
1 2  3 4 5 6 7 s 9 i o i i i 2  

Fig. 1 

diagram, whereby one moves from the point (N  = 1, S = f )  to 
the right, represents a possible spin function. At each point 
(N,S)  on the diagram, the number of different paths which may 
be followed, starting from N = 1, S = f is shown in a circle. 
This number is just the same a s f l  [eqn. (2.6)] and it may be 
observed that this is equal to the sum of the two numbers shown 
at the points for N - 1 which are directly connected to the 
chosen point, 

f :  = fy:; +f:I;, (3.1) 
a relationship which may be verified directly from eqn. (2.6). It 
is clear that a particular path on the branching diagram is 
defined by a series of intermediate spins S2, S3, . . ., and hence 
the index k which specifies a particular spin function can be 
represented as eqn. (3.2). 

kE(S2S3.....SN- 1). (3.2) 
In this, it is unnecessary to specify S1, since it is always equal to 
f and similarly it is not necessary to give SN, as this is just the 
total spin, S. 

Spin functions constructed in this way are known as Kotani- 
Yamanouchi or simply Kotani spin functions after those who 
introduced them.9910 They are orthonormal [see eqn. (2.8)]. 

Another basis of spin functions which has proved itself of 
great value in chemistry is that due to Rumerll and was much 
used in classical VB theory. It is specially suited to describing 
chemical bonds and hence it is applied almost exclusively to 
systems (or subsystems) with zero net spin. The functions in this 
basis are constructed by considering all distinct pairs of 
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electrons i, j and coupling the associated spins oi, oj to singlets 
eqn. (3.2.i). 

( i  - j )  = *(aipj - piaj). (3.2.i) 
But simply pairing up the spins of all electrons i, j in all possible 
ways will produce an over-complete set of spin functions. This 
can be seen most easily in the case of four electrons. For a net 
spin S = 0, eqn. (2.6) tells us there are two linearly independent 
spin functions, but following the elementary Rumer prescrip- 
tion, we would obtain three, the spins paired up as (1-2)(3-4), 
or (14)(2-3), or (1-3)(24). However, there is a simple 
graphical technique, devised by Rumer, to eliminate the 
redundant spin functions, leaving just the required number, eqn. 
(3.2.ii). 

N !  N -  
- gV!($N+l)! * 

(3.2.ii) 

We place N numbered dots in sequence around a circle, and 
join them up in pairs such that the joining lines do not cross. 
Thus for four electrons we have: 

and this leads to two spin functions only (3.2.iii) 

= fi(alP2 - Pla2)fl(a3P4 - P3a4), (3.2.iii) 
and (3.2.i~) 

@:,0;2 = G ( a l P 4  - P 4 a l ) f l < a 2 P 3  - P3a2) (3.2.iV) 
as required. 

A general Rumer function is constructed by pairing the spin 
of electrons p and q,  Y and s, t and u, etc. to singlets. We label 
the resulting spin function by: eqn. (3.2.v) 

k - ( p - q , r - s , t - u  ,...). (3.2.v) 

The Rumer basis of spin functions has found extensive use in 
organic chemistry in the description of the mechanisms of a 
great variety of organic reactions such as aromatic electrophilic 
and nucleophilic attack and a host of addition reactions. Even 
after forty or more years of development of molecular orbital 
methods, this mode of description obstinately remains a major 
part of theoretical organic chemistry. 

The Rumer basis has proved to be particularly convenient in 
describing aromatic systems, where the well-known Kekul6 
structures play a fundamental role. The two KekulC structures 
for benzene are illustrated as (1) and (2), together with the three 
corresponding structures for naphthalene (3)-(5].$ An im- 

$ In the case of benzene, three more spin functions-those corresponding to 
the so-called 'Dewar' or para-bond structures-are needed to complete the 
set of five spin functions for six JC electrons with net spin S = 0. In the case 
of naphthalene with ten JC electrons,fAO = 42, so that in addition to the three 
KekulC structures shown, there are no less than 39 further possible spin 
pairings-a fact which most organic chemists do not wish to know. As will 
be seen, an important result of spin-coupled theory is that the role of the 
unwanted extra 39 structures may be considered negligible when the 
orbitals are optimized. 

portant result which arises out of our extensive use of different 
bases of spin functions, is the great utility of the little-known 
Serber basis.12 This set of spin functions is constructed by 
considering pairs of electrons (1,2), (3,4), ....., (N  - 1, N> in a 
similar manner to that of Rumer. The pairs of spins are then 
coupled to form either a singlet (S = 0) or triplet (S = 1)  spin, 
which are subsequently coupled successively together to form 
the final spin. A particular function in this basis is identified by 
the quantum numbers, eqn. (3.2.vi), 

. . .)S (3.2.vi) 

in which s12, s34, ..., etc. is equal to 0 or 1, depending on 
whether electrons 1 and 2, or 3 and 4 form a singlet or triplet. S4, 
S g ,  .... is the net spin for four, six, etc., electrons. 

k = ((. . .((s12, s34)S4; sS6)S6; 

The Serber function eqn. (3.2.vii), 
((. . .(0,0)0;0)0 ..... )O (3.2.vi i) 

in which the electron pairs 1 and 2, 3 and 4, . . . , N - 1 and N 
form singlets is identical to the Rumer spin function eqn. 
(3.2.viii), 

( 1 - 2 , 3 - 4  ,....., (N- l ) -N)  (3.2.viii) 

and to the last Kotani spin function eqn. (3.2.i~). 

k = (OiOi.. . . . .$) (3.2. ix) 

The Serber spin functions are particularly useful in displaying 
the spatial symmetry properties of spin-coupled wave functions, 
when it is obvious that those spin functions which do not lead to 
the required overall symmetry of the total wave function have 
zero spin-coupling coefficients. This has turned out to be of 
great utility in cases where the introduction of electron 
correlation leads to unexpected additional symmetries of, for 
example, the o electrons in a planar x system. Examples of this 
will be presented in due course. 

From a more general point of view, it is often physically and 
chemically meaningful to divide the electrons into groups and it 
is very convenient if this division is reflected in the mode of 
construction of the spin functions. Consider a system in which 
we wish to focus attention upon a group consisting of N1 
electrons and another containing N2 electrons, where N1 + N2 
= N ,  the total number of active electrons. For example, this 
division might refer to N1 electrons in o orbitals and N2 
electrons in a n system, or reflect the fact that in one particular 
mode of dissociation, the molecule forms two fragments 
consisting of N 1  and N2 electrons. For such purposes it is useful 
to form a set of spin functions of the type eqn. (3.2.x), 

M l , 4  

in which the index k of the total spin function is characterised by 
eqn. (3.2.xi), 

k = (SJ2klk2) (3.2.xi) 
and k l ,  k2 describe the 'internal couplings' of the component 
spin functions and @!&,;,. The symbol 
(SM [ S1S2M1M2) stands for the vector coupling coefficient 
which couples together the two angular momenta S1 and S2. 

As an example of this, a spin-coupled calculation was carried 
out of the dissociation of the HCN molecule in its ground state, 
involving the dissociation of the C-N triple bond.'? eqn. 
(3.2.xii). 

HCN(X12+) + CH(42-) + N(4S). (3.2.xii) 

The 14-electron molecule of HCN thus decomposes into two 
fragments, each consisting of seven electrons. A very conve- 
nient basis of spin functions is one in which the seven electrons 
of the CH radical are coupled to a definite spin S1 (equal to t in 
the combined product, CH + N, of lowest total energy) and the 
N atom is in its ground state, also with a spin S2 of +. Since the 
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total spin S = 0 in this example, the two sub-spins S1, S2 must 
be equal. The other possible value of S1, S2, which may be of 
interest, (4, i), would for large C-N distances correspond to the 
dissociation of the molecule into the ground (2n) state of CH 
and the excited 2P state of N, which corresponds overall to an 
excited state of the products.§ Using this ‘707’ basis at C-N 
distances close to equilibrium, tells us how much this excited 
state contributes to the total ground state of HCN. 

Of course for equilibrium internuclear distances, HCN is 
better described in terms of electron-pair bonds, i.e. in the 
Serber or Rumer basis of spin functions. This brings us to the 
problem of transforming from one set of spin functions to 
another. In practical terms the problem is as follows: A 
calculation has been carried out using, e .g .  the Kotani basis 
(which may be the most convenient) and we have obtained a set 
of spin-coupling coefficients CSk ( k  = I ,  . . . , fi) corresponding 
to this basis. What are the values of the spin-coupling 
coefficients c’sk in some other basis? 

This is not merely a question of theoretical interest, since it is 
intimately connected to important physical and chemical 
information which a spin-coupled calculation can yield about a 
given system. Certainly such a transformation is always 
possible and it remains to develop an efficient algorithm for 
carrying it out. This has been accomplished by means of the 
code SPINS (see ref. 15), which also runs on a personal 
computed and which transforms a set of spin-coupling 
coefficients between the Kotani, Rurner and Serber bases of 
spin functions. It is also possible to combine any of these 
transformations with a reordering of the active orbitals in a spin- 
coupled wave function in any manner. 

It is, hopefully, clear from the foregoing that there are many 
possible ways of coupling the individual electron spins to form 
a given resultant S and the choice is mainly dictated by the 
actual system under consideration and the process (e .g .  reaction 
or dissociation, etc.) under study. An appropriate choice of basis 
of spin functions sheds much light upon the behaviour of the 
wave function, in a very compact and physically meaningful 
manner. Unsuspected symmetries are often exposed and, 
combined with the shapes of the orbitals, a great deal of physics 
and chemistry of the system is revealed. Such information often 
suggests, for example, energetically the most favourable 
reaction path, or, in the case of a molecule in an electronically 
degenerate state, frequently suggests the most likely Jahn- 
Teller distortion of the molecule. 

4 The physical interpretation of the spin-coupled wave 
function 
Having discussed the various distinctive features of the spin- 
coupled wave function, we are in a position to describe its 
physical and chemical significance and to assess its general 
quality and reliability in relation to other available ab initio 
quantum chemical approaches. 

The spin-coupled approach, as we have seen, describes a 
system with N active electrons, by N distinct, singly occupied, 
non-orthogonal orbitals, the spins of which are coupled together 
in all allowable ways to form the required overall resultant S. 
The single occupancy allows the electrons to avoid one another, 
thus incorporating a significant amount of correlation between 
them. The overlap between the orbitals, on the other hand, 
allows for quantum interference effects which are crucial for a 
good description of bonding. 

Perhaps the most characteristic feature of the wave function 
is the linear combination of many spin functions. The pairing of 
the electrons in all possible ways, together with the optimization 

8 States with ( S , ,  S,) equal to (3, :) and ($ $) are too high in energy to be 
of interest and are almost certainly repulsive as far as the interaction of CH 
and N are concerned. 
1 Copies of which may be obtained by contacting P.Karadakov@sur- 
rey.ac.uk or from http://rs2.ch.liv.ac.uk/dlc/SPINS.html 

of the shapes of the orbitals, introduces further correlation 
effects. These two attributes always allow for a correct 
description of molecular dissociation, however complicated. As 
the interatomic distances increase, the orbitals regain their pure 
atomic shape, and the mode of coupling of the spins also reflects 
the separation of the parts of the molecule. This aspect of the 
behaviour of electronic wave functions is perhaps the most 
important in chemistry, since the making and breaking of 
chemical bonds, or their rearrangement, constitutes the very 
essence of chemistry at the molecular level. 

The spin-coupled wave function thus incorporates a con- 
siderable amount of chemically significant electron correlation 
in a compact and highly visual form. 

One phenomenon which made its appearance early on in this 
work is the fact that chemical bonds do not appear to break 
gradually, but on the contrary, are little affected by increasing 
bond distances until a critical value is reached, when large 
changes are observed to occur in the wave function over a very 
short internuclear distance: ca. 0 .5~0,  when the orbitals rapidly 
lose the deformation characteristic of bond formation and at the 
same time, the spin coupling coefficients also vary rapidly. This 
occurs at an interatomic distance of ca. 4 . 5 ~ 0 ,  which remains 
surprisingly constant for many different species and processes. 
Indeed, one might assert that in a chemical reaction, 

A + B  + C +D, 

to a good approximation, nothing occurs between the reagents A 
and B until they approach to within 4 . 5 ~ 0  of one another, when 
the reaction occurs with surprising suddenness. Hence a fairly 
universal total reactive cross-section might be estimated to be 
4n (4.5a0)2 - 70 X 10-20 - 7 X 10-19 m*. 

As we have seen, the spin-coupled wave function is very 
flexible, but it is important to understand the limits of this 
flexibility: we have the freedom to order the orbitals in any way 
we please, we may choose the set of spin functions in a wide 
variety of ways. Some of this freedom can be well utilized in 
order to reduce the amount of computational effort necessary in 
determining the wave function (see below). However, a 
concomitant danger in this apparent freedom is the opportunity 
for deriving formalisms which may appear different but do not 
introduce anything new into the theory. 

It is also important to appreciate clearly the distinction 
between SC theory and the older or ‘classical’ valence bond 
theory. In classical VB theory, the orbitals are taken to be 
predetermined, either as simple atomic orbitals or hybrids of 
atomic orbitals. These hybrids, moreover, are fixed, for example 
either as sp, sp2 or sp3, etc. type orbitals. In SC theory, in 
contrast, no such preconceptions are imposed. The orbitals are 
optimized as linear combinations of basis functions (usually 
approximate AOs) much as in MO-based approaches. However, 
in common with classical VB theory, the spin coupled orbitals 
in general overlap with one another (except, of course, in the 
case of orbitals of different symmetry), or, since the SC orbitals 
are often localized, by virtue of the physical separation between 
them. Generally speaking, no constraints, apart from normal- 
ization, are applied to the SC orbitals and as a result they may 
be as localized or as delocalized as the situation demands. 
Bearing in mind that the SC orbitals are always singly occupied, 
this last means that their shapes are determined by whatever 
produces the optimum balance between the greatest extent of 
avoidance of the electrons in different orbitals and quantum 
interference effects, which arise from the overlap between 
orbitals. In practice, we have found that this invariably means 
that the SC orbitals turn out to be localized and indeed often 
resemble atomic or hybrid atomic orbitals, or semi-localized, 
meaning that the SC orbitals spread over two or, at most three 
centres. We have found a greater degree of delocalization than 
this to be rare. 

One should also bear in mind that, in contrast to classical VB 
descriptions, the SC orbitals remain singly occupied, the 
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optimization of the orbitals, as explained above, obviating the 
need to introduce ionic structures for covalent molecules. 

The determination of the SC wave function, the orbitals and 
values of the spin-coupling coefficients, is attained by the usual 
procedures in quantum mechanics. According to the variational 
principle, we must calculate the total energy E and minimize it 
with respect to these same parameters, cpp, c , ~  and CSk. This is 
done by calculating the first and second derivatives of E with 
respect to cpp, cIp and CSk. Much of the algebraic detail is set out 
in the original paper20 and here we do no more than quote one 
or two equations. The total energy corresponding to the spin- 
coupled wave function is given by eqn. (4.1). 

= p p l 4 ( o p I h l o u ) + ;  A p u=l Ir. ~~(p~,i.)(o.B..Is,oiol u 1 r=l ) 
(4.1) 

Here, X stands for the usual non-relativistic electronic Ha- 
miltonian, containing the operators for the kinetic energy of the 
electrons and all the Coulomb interactions between the 
electrons and the nuclei making up the molecule. 

The normalisation integral (Ys, I YsM) is written on the right 
hand side of (4.1) as A and the usual one- and two-electron 

The D ( p  I Y) and D(pv I At) are elements of the one- and two- 
electron density matrices. This, together with the normalization 
integral A is where all the effects of the non-orthogonality 
between the orbitals occurs. 

If inactive orbitals are present, it is sufficient to modify the 
one-electron operator h which occurs in (& I h I &)./I 

The spin-coupled wave function as represented by eqn. (2.1) 
is, of course, based on a single spatial configuration. There are 
several situations which are not covered by this form of wave 
function. In particular, degenerate electronic states, frequently 
accompanied by a Jahn-Teller distortion of the nuclear 
framework, pose interesting problems (as indeed such states 
also do in the MO framework). The further systematic 
refinement of the spin-coupled wave function and the treatment 
of excited states also present areas not covered by wave function 
(2.1). Excited states in particular have proven to be a difficulty 
for the traditional valence bond approach, but are fully 
accounted for in the spin-coupled approach. This matter is 
mentioned briefly in Section 8. 

The spin-coupled wave function does not-cannot-incor- 
porate all the different types of electron correlation effects. An 
obvious extension is the development of a multiconfiguration 
spin-coupled wave function and steps in this direction were 
already attempted with the earliest applications of spin coupled 
theory. 17.18 Since the spin-coupled wave function incorporates 
as much ‘radial’ correlation as is possible within the framework 
of a single-configuration form, the main improvements to the 
wave function must stem from the inclusion of doubly excited 
configurations in which two occupied orbitals are replaced by 
orbitals which differ from them, in some sense, by symmetry. In 
the case of the very simple diatomic molecules H2, LiH and Liz, 
(see ref. 17 and 18 above), whose occupied orbitals are all of 0 
symmetry, it is fairly clear that the main improvement is due to 

integrals as (@p I h I @v) and (@p@v I g I @h@t). 

I( This is achieved by replacing h by the operator F,, which is the Fock 
operator for the core. 

F, = c 2 h l  + c( 2 J ,  - K l ) ,  
/ = I  / =I 

where J ,  and K, are the usual Coulomb and exchange operators of Hartree- 
Fock theory, but here are constructed from the inactive orbitals only. 

replacement of the two 0 orbitals involved in the bond by two 
orbitals of n symmetry, n+n-, if complex orbitals are used, or 
by nXdx + J T ~ ’ ~ ,  if real orbitals are employed. 

In the remaining parts of this Review, we present a selected 
series of applications of spin-coupled theory to different parts of 
chemistry. 

5 Simple examples 
The most elementary example of course is just the H2 molecule. 
As described by eqns. (1.4) or (2.9), there are two orbitals, @A 

and @B which overlap. These are displayed in Fig. 2 below. On 
the right of Fig. 2, contour plots of the two orbitals are shown, 
while on the left, orbital @A is shown as a three-dimensional 

shape with the intemuclear axis superimposed. As the inter- 
nuclear distance R increases, the deformation of each orbital @* 
and @B decreases to 0, leaving just a pure hydrogen 1 s orbital on 
each atom. The potential curve for H2 given by the spin-coupled 
wave function is compared to the results from a number of other 
wave functions in Fig. 3. 

We see that the spin-coupled result remains close to that for 
a full configuration-interaction (full-CI) wave function** for all 
values of R and then it becomes identical with it as R + CO. 

Also shown on this diagram is the potential curve given by 
the original Heitler-London wave function, eqn. (1. l), and that 
given by MO theory (the ‘self-consistent field’ (SCF) function). 
It can be seen that the SCF wave function does not describe 
dissociation correctly. 

The potential curve of the lowest triplet state of H2, which is 
repulsive, is also shown. According to eqn. (2.1), the wave 
function for this state ( N  = 2, S = 1) is given by eqn. (5.1). 

** A full-CI wave function is the most general variational wave function 
that can be constructed from a given basis set, either in the MO framework 
or that of VB (in which case it is called a full-VB wave function). The two 
wave functions (full-CI and full-VB) are entirely equivalent. 
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which for A4 = 0, can be obtained simply from that for the 
singlet state by reversing the signs in eqns. (1.1) or (1.4). 

A somewhat more complicated example is provided by the 
methane molecule CH4. In this case we have eight valence 
electrons and two core electrons, so that N = 8, n, = 1. The 
ground state is a singlet, S = 0, so that now there is a total of 
fourteen spin functions. The SC wave function is determined by 
minimizing the total energy as described in Section 2. Using a 
very large basis set,?? the energy of the spin-coupled wave 
function is ca. 0.065 Hartrees lower than that of a SCF function 
calculated with the same basis, which is a fairly substantial 
difference. This indicates that a significant amount of the effects 
of electron correlation is incorporated in the SC wave 
function. 

On examining the wave function, we find that the eight SC 
valence orbitals form four sets of two orbitals each. The orbital 
pairs are symmetrically equivalent and are permuted amongst 
themselves by operations of the tetrahedral group, T d .  Within 
each pair, one of the orbitals is very largely localized on one of 
the H atoms and clearly resembles a H(1s) orbital with small 
deformations, almost exclusively onto the C atom. The second 
orbital of the pair is localized mainly on the C atom, but with 
some small degree of delocalization, almost exclusively onto 
the H atom of the pair. This is shown in Fig. 4. 

The deformation of the C-based orbital can be seen quite 
clearly. Thus, without the imposition of any preconceptions on 
our part, the SC wave function for methane produces what are 
clearly four, somewhat deformed, sp3 hybrid orbitals and also 
four deformed H(1s) orbitals. It goes without saying that this 
corresponds closely to our usual concept of four-valent carbon 
with bonds to four H atoms. 

In addition, however, we must consider the spin functions of 
which there are fourteen. This example illustrates very clearly 
some of the features of different spin functions. Table 1 shows 
them, using the Serber basis, with the orbitals ordered as ($1,$2) 

(c$~,$~), ($5,$6), ($7,&J. The notation of column 2 has been 
explained in Section 3. 

Of these, spin function 14 corresponds to the perfectly paired 
case and this has a weight of 89.4%. This of course is what we 

~~ ~ ~ 

t t  'Triple-zeta valence plus polarization' (TZVP). 
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imagine to be the case in a simple molecule such as methane. All 
the other spin functions represent different possible ways of 
coupling the eight valence electrons. It can be seen that a 
number of them are zero by symmetry and that six others are 
exactly equal (as long as the molecule has tetrahedral sym- 
metry). These represent the case when there are two triplet 
bonds, the two triplets giving a zero net spin. The weight of such 
an unlikely spin arrangement is naturally rather small: 1.7%. 
With four symmetrically equivalent bonds, there are six such 
unique pairs of triplet-coupled bonds. Together with the 
perfectly paired spin function, this constitutes the entire spin 
function, for 89.4 + 6 X 1.7 = 100%. However, once the H 
atoms move away from their equilibrium position in CH4, spin- 
coupling patterns other than the perfectly paired case assume a 
much more important role. 

Table 1 Spin coupling coefficients for CH4 (Serber basis) 

Spin-Coupling pattern Coefficient Weight 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
1 1  
12 
13 
14 

0.0487 
-0.1298 

0.0 
-0.1298 

0.0 
0.0 
0.0 
0.0542 

- 0.1298 
- 0.1298 

0.0 
-0.1298 
-0.1298 

0.9453 

0.0023 
0.0168 
0.0 
0.0168 
0.0 
0.0 
0.0 
0.0029 
0.0168 
0.0168 
0.0 
0.0168 
0.0168 
0.8936 

If we transform these spin-coupling coefficients to the Rumer 
basis, we find that the perfectly paired spin function now 
contributes ca. 80% to the total spin function. The remainder is 
made up almost entirely from structures containing a single 
H-H pairing and only two C-H bonds. There are four such 
structures which, at the equilibrium geometry of CH4, are all 
symmetrically equivalent. The occurrence of this type of spin 
pairing with significant contributions (ca. 20%), provides us 
with some insight into the topic of the following section: the 
insertion of H2 into CHZ(lA1). 

6 The CHZ(lA1) + H2 insertion reaction 
Following on from this discussion of methane, it is interesting to 
study a related process: that of the insertion of the H2 molecule 
into the carbene radical CH2 in its low-lying 'A1 excited state to 
form CH4, eqn. (6.1). 

H2 + CHz('A1) + CH4. (6.1) 
This reaction is obviously more complex than the simple bond- 
breaking process, eqn. (6.2) 

CH4 + CH3(2A'I) + H (6.2) 



and involves a fairly complex rearrangement of bonds. Clearly 
the spin-coupling of the electrons on the right hand side of eqn. 
(6.1) is completely different to that of the left hand side. In order 
to understand the pathway for this reaction, it is necessary to 
look briefly at the SC description of CH2 in this excited state.24 
This is shown in Fig. 5. 

; 

H 

H H 

I I I  I 

Fig. 5 Orbitals (a) $1; (b) $2;  (c) $3; (4 $4; (e )  $ 5 ;  (f) $6 

are plotted in the plane of the molecule. We 
clearly see two C-H bonds ($1,  $2) and ( $ 3 ,  +4). Orbitals +5 

and $6 are plotted in a plane perpendicular to the molecular 
plane and bisecting the H-C-H angle. If the two C-H bonds are 
regarded as pointing into the corners of a tetrahedron, then $5 

and @6 point approximately in the direction of the two 
remaining corners of the same tetrahedron. Thus, according to 
the SC description, the 'A1 state of CH2 closely resembles 
methane itself from which two H atoms have been plucked. 

This is quite different from the simple MO description of this 
state, according to which the two non-bonding electrons of CH2 
are considered to occupy a single lone pair orbital of a1 (0) 
symmetry, stemming from the C atom and pointing along the C2 
axis away from the H atoms. The following discussion focuses 
upon the utility of the SC description. 

It would appear that the most obvious approach of an H2 
molecule to CH2( 'Al) is a simple symmetric path where the axis 
of the incoming H2 is perpendicular to the C2 axis of the 
molecule and in a plane perpendicular to that of CH2, bisecting 
the H-C-H angle. However, this implies the simultaneous 
breaking of the H2 bond and the formation of two new C-H 
bonds. According to SC calculations, this path encounters a 
very high-energy barrier and thus is very unfavourable. But on 
optimising the various parameters which define the H2 + CH2 
system (see ref. 23), we find the minimum energy path is as 
shown schematically in Fig. 6. 

The H2 molecule HI-H2 approaches along the line of the lobe 
of one of the singly occupied orbitals of CH2, $5, say. Then as 

Orbitals 

Fig. 6 Schematic drawing of the pathway for the insertion of H2 into 
CHZ(I'41) 

the H1-C distance decreases to ca. 3ao, the H1-H2 bond begins 
to break and a new HI-C bond begins to form-as shown 
clearly by the sharp variation in the coefficients of the two most 
important spin-couplings. Simultaneously, the second incoming 
H atom, H2, now swings right around so as to interact with the 
other singly occupied orbital of CH2, $6, so forming the second 
new C-H bond. There is no barrier along this path and the value 
of the exothermicity of the reaction, calculated from the 
energies of the SC wave functions for reactants and products is 
474.5 kJ mol-1, compared to an experimental value of 490 
kJ mol-1. 

With the benefit of hindsight, this reaction path is entirely 
reasonable: one new C-H bond starts to form, followed swiftly 
by a second. Energetically, this is obviously more favourable 
than the simultaneous formation of two new C-H bonds. The 
overall process is nonetheless synchronous. Although one bond 
starts to form first, this process is not completed before the 
second bond begins to form. However, it would be hard to 
predict this highly asymmetric reaction path without knowing 
the form of the SC orbitals for CH2( lA1). 

If one were to reverse the motions along this path and study 
the disintegration of CH4 by, say, the pumping of much energy 
into appropriate vibrational modes, then this picture predicts 
that as the first H atom starts to depart from CH4, it takes a 
second H atom with it and, moreover, that the nascent H2 
molecule will possess a great deal of angular momentum, i.e. the 
H2 will be in a highly excited rotational state. There is indeed 
experimental evidence for this. 

7 Hypervalence 
The impossibility of drawing satisfactory Lewis structures for a 
whole range of molecules, such as NO2, HCNO, N20, 03, is 
well-known. These are often referred to as 1,3-dipolar mole- 
cules. In order to bring their electronic structure and apparent 
valency in line with other, less unusual systems, many chemists 
fall back upon the concept of 'resonance'. The resonance 
structures that are commonly drawn for NO2 are well-known to 
all chemists. For diazomethane (CHZNZ), which is planar, it is 
common to indicate resonance between the structures shown 
below, which indicate that diazomethane has some diradical 
character. Although it is unstable and tends to dissociate 
explosively into N2 and an excited state of CH2, there is 
otherwise nothing in its vibrational or rotational spectrum to 
indicate that this molecule possesses any kind of unpaired 
electron character. 
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Spin-coupled calculations on diazomethane and a number of 
other 1,3-dipolar molecules listed above have been carried out 
at various levels, the simplest example to consider being just the 
four n electrons of CH2N2. According to the SC model, they are 
accommodated in four distinct orbitals, shown in Fig. 7. The 

I I I  

contours are plotted in a plane parallel to the molecular plane 
and la0 above it. It can be seen that orbital $1 is largely a x 
orbital centred on the C atom of CH2N2, but distorted somewhat 
towards the neighbouring N atom, N,. Similarly, $2 is centred 
on N, and is deformed towards $ l .  However, there is a second 
x orbital $3 centred on N, but distorted towards the terminal N 
atom, N, and finally there is $4, which is a JI orbital on N, but 
distorted towards $3. The spin-coupling coefficients show that, 
in spite of the very large overlap between the two orbitals 
centred on N,, $2 and $3 (A23 = 0.785, using a very large basis 
set of Gaussian-type orbitals$$), the electrons occupying these 
orbitals are not paired with each other, but instead there is an 
almost perfect pairing of the electron spins in the two orbital 
pairs ( @ I ,  $2)  and ($3, $4). This corresponds to the chemical 
structure: 

H \  
C=NEN 

H’ 

in which the central N atom takes part in five electron-pair 
bonds. 

The large overlap A23 between $2 and $3 should not be 
forgotten. We tend to think that if a pair of electrons forms one 
bond, then it cannot contribute to another bond, i.e. that pairs of 
orbitals forming a bond are orthogonal to all other pairs. Here, 
we see that this is not so: in spite of the clear formation of five 
fully fledged electron-pair bonds, the overlaps between them 
are such that the average number of electrons around N, (the 
Mulliken population) is very close to 7: i.e. the central N atom 
is almost exactly neutral. The same is true of N,. However, the 
C atom is slightly negative and the two H atoms are 
correspondngly slightly positive. This provides the H atoms 
with a distinct acidic character, all of which is fully in accord 
with the known chemistry of CH2N2. 

$$ A ‘triple zeta plus valence-shell polarization’ (TZVP) basis. 
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Similar considerations hold for other 1,3-dipoles. The N20  
molecule is best presented as 

N = N = O  

in which the central nitrogen atom again participates in five 
electron-pair bonds. The obseryed bond lengths of NzO 
( R N  - N = 1.128, R N  - 0 = 1.184 A) are certainly reminiscent of 
an N-N triple bond and a ‘normal’ N=O double bond. 

Thus, from the perspective of SC theory, the problem 
presented by these molecules resolves itself in a remarkably 
simple fashion. Contrary to what we were all taught as 
undergraduates, the nitrogen atom does indeed form five 
covalent linkages and the availability or otherwise of d orbitals 
has nothing to do with this state of affairs. This usually shows 
itself in terms of multiple bonds, such as in CH2N2, N20,  F3N0, 
etc., rather than as five single bonds, simply because the small 
size of the N atom normally precludes the presence of five 
nearest neighbours. This is not so for the phosphorus atom. The 
apparent difference in valency between the first and second 
rows of the periodic table is therefore a consequence of the size 
of the atoms and is not primarily due to the availability or 
otherwise of 3d orbitals for bonding. 

This conclusion is reinforced by spin-coupled and other 
studies on SF6 and PF5. The nature of the bonding in these 
molecules presents a direct challenge to conventional views on 
valency. According to the SC calculations, the results§§ for SF6, 
for example, show that the 12 valence electrons are accommo- 
dated in twelve well-localized orbitals which form six highly 
polar S-F bonds. Furthermore, the nature of the orbital pairs 
which form these bonds is very little affected by whether or not 
d orbitals on the S atom are included in the basis set. Two of the 
resulting orbitals, forming one of the S-F bonds, are shown in 
Fig. 8. Once more it should be emphasized that these orbitals are 
the straightforward outcome of an ah initio calculation, with no 
constraints imposed as to the final form of the orbitals, nor the 
type of pairing of the electron spins. 

It remains to rationalize this result in simpler terms. 
It is worth recalling that explanations of the bonding in SF6 

which are based upon the supposed d2 sp3 hybridization of the 
orbitals on the S-atom cannot explain properly why SH6, for 
example, which is unknown, should not be just as stable as SF6 
itself. The polarity of the S-F bonds is clearly an essential part 
of the answer. 

This can be simply visualized as follows. Consider one of the 
bond pairs $2)  of SF6, illustrated above. Orbital $1 consists 
of a combination of a 2p orbital on one of the F atoms and an sp 
hybrid Xs(sp) on the central S atom, where Xs(sp) is of the form 
in eqn. (7.1). 

XS(SP) - %3s) S(3P) (7.1) 

$ 1  = W P )  f hXs(sp> (7.2) 

so that eqn. (7.2) holds. 

(see the upper orbital in Fig. 9). The other member of the pair, 
$2, is an almost pure F(2p) orbital [eqn. (7.3)]. 

$2 = W P )  (7.3) 
(see the lower orbital in Fig. 9). Hence the bond pair ($1, $2) is 
of the form eqn. (7.3.i). 

($ 1, $2) = { (F(2p) + hXs(sp)), W P )  I 
= ( m p ) ,  F(2p)) f h(Xs(sp), W P ) )  (7.3.i) 

In other words the S-F bond has significant ionic character, but 
with sufficient covalency to provide directionality. 

$3 The calculations on the twelve valence electrons included all 132 spin 
functions, as specified by eqn. (2.6). However, at least at the equilibrium 
geometry, only the perfectly paired spin function plays any significant 
role. 
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Fig. 8 

It is important to note that we may form six sp hybrids of the 
form (7. l), according to whether we choose the x-, y-, or z-axis. 
These hybrids however are linearly dependent, since we started 
from just four orbitals, S(3s), S(3px), S(3pY), S(3pJ and arrived 
at the six functions (7.1). This is resolved by the incorporation 
of F(2p) character. 

The polarity of the S-F bonds in SF6 is therefore a necessary 
part of the SC description. 

Similar considerations apply to PFs and the original paper 
(ref. 25) should be consulted for further details. 

It remains to add that almost precisely the same description 
goes through for XeF2, Fig. 9. There are two bonding pairs of 
orbitals, each one of which is very similar to the pair (Ql, Q2) 
described above for SF6, leading to very polar Xe-F bonds. 

It is clear from the results presented in this section, that the 
time has come from the much-loved octet rule to be superseded. 
Presented with sufficient energetic incentives, almost all 
valence electrons can take part in bonding. We need retain only 
an 8-electron rule, similar to the 18-electron rule of transition 
metal chemistry. Polar bonds which shift density away from the 
central atom appear to be favoured, particularly if the formal 
number of bonds is very high. Hence differences in electro- 
negativity and the size of the central atom can be useful first 
guides to the possible existence of a particular hypervalent 
species. 

Xe 

Fig. 9 

8 Aromaticity and antiaromaticity 
The concepts of aromaticity and antiaromaticity lie at the very 
heart of organic chemistry. The first useful description of 
benzene was due to Kekul6 who drew the structures (1)-(2) in 
Section 3 (see also the footnote) and whose ideas of resonance 
between the different C-C bonds were later justified and 
clarified on the basis of quantum theory by Pauling in terms of 
different spin-pairings of the electrons in C(2p,) orbitals, i .e.  in 
terms of resonance between the so-called Kekul6 and Dewar (or 
para-bond) structures. 

Molecular orbital theory, however, gives an entirely different 
type of description: that of n orbitals delocalized around the 
benzene ring. The associated MO energy level diagram is 
shown below, with the appropriate labels for the point group of 
the molecule, D6h (Fig. 10). 

a2, 
c6 

Fig. 10 

Accordingly, the electron configuration of the ground state is 
(a:" etg). By generalizing this diagram, a simple but very useful 
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rule was obtained by Hiickel which predicts that if n is the 
number of carbon atoms in a ring system, those molecules with 
4n + 2 C atoms will be aromatic, while those with 4n C atoms 
are predicted to be antiaromatic. Over the last forty or so years 
this has become the accepted description of benzene, while that 
in terms of Kekulk and para-bond structures has become 
somewhat less common. 

However, in 1986 a spin-coupled calculation was carried out 
on the n electrons of benzene.26 As emphasised previously in 
section 4, no constraints or preconceptions were imposed upon 
the form of the orbitals, nor upon the type of coupling between 
the spins. The result showed six n orbitals, each of which is 
localized around one of the C atoms constituting the ring. One 
of them is depicted in Fig. 1 1 in which the contours of the orbital 

H 

Fig. 11 

are drawn in a plane parallel to the molecular plane and lao 
above it. It can be seen that although this orbital is clearly 
localized, there are obvious deformations towards the neigh- 
bouring C atoms on each side. The remaining spin-coupled 
orbitals are obtained from the one shown by successive 
rotations of 2x/6 about the principal symmetry axis of the 
molecule. The spin-coupling coefficients in the Rumer basis 
have the values shown in Table 2. These numbers change only 
very slightly with different basis sets for the orbitals. Spin 
functions 1 and 4 correspond to the two Kekulk structures and 
we see that they each make a contribution of ca. 40.5% to the 
total wave function. The remaining three spin functions, 2 ,3  and 
5 are the Dewar or para-bond functions and each of them 
contributes ca. 6.4% to the total. 

Table 2 

Spin-coupling pattern Coefficient Weight 

1 (1-2,3-4,5-6) 0.5 1638 0.4046 
2 (1-4, 2-3, 6-5) - 0.09461 0.0636 
3 (2-5, 3-4, 6-1) - 0.09461 0.0636 

5 (1-2, 6-3,54) - 0.09461 0.0636 
4 (2-3,4-5, 6-1) 0.5 1638 0.4046 

The most significant feature of this result is that the energy 
improvement (energy lowering) obtained by the spin-coupled 
wave function over that of the MO wave function (for a given 
basis set) is no less than ca. 92% of the maximum attainable 
improvement using a wave function of whatever type, MO or 
VB, constructed from six electrons and six orbitals. In other 
words, a fully correlated wave function for the x electrons of 
benzene approximates closely to the spin-coupled wave func- 
tion. There is thus very much more to the Kekulk description of 
benzene than was hitherto realized. This calculation has since 
been repeated many times with basis sets of varying size and 
with complete optimization of valence and all inactive orbitals. 
The results vary very little. 

Spin-coupled calculations have subsequently also been 
carried out on many aromatic systems, such as heterocyclic 
five- and six-membered rings, on naphthalene and on azulene. 
For naphthalene and azulene, with ten n electrons, the orbitals 
obtained are very similar to those of benzene, with the exception 

of the two orbitals localized at each of the C atoms which bridge 
the two rings. These orbitals display a three-way deformation, 
towards each of the three adjacent carbon atoms. In addition 
formula (2.6) shows that for a ten-electron system there are 42 
possible spin functions which should be taken into account. But 
since the spin-coupled orbitals are fully optimized, it turns out 
that the only spin functions which play any significant role in 
these molecules are those corresponding to the Kekulk struc- 
tures [in the case of naphthalene, structures (3), (4) and (5) in the 
diagram in Section 31 and that the contribution of the other 39 
structures may be neglected. 

The MO description also predicts a number of excited states 
of benzene. Thus, a single excitation of an electron from an 
occupied MO (a2u or el,) to one of the unoccupied MOs shown 
on the diagram above (e .g .  to the e2" or bZg orbitals) gives rise 
to a number of valence excited states. In addition, there is also 
a large number of Rydberg states with energies below that of the 
first ionization potential. 

A constant aim of theoretical studies is to determine these 
excited states, preferably without going beyond the o/n 
approximation. Certainly for the ground state, to abandon the 
o/n separation would be to ignore a vast body of chemical 
experience, but the situation may be different in excited 
states. 

It turns out that the excited states of benzene (with energies 
less than the first ionization potential) fall into three classes: 
covalent, ionic and Rydberg. An example of a covalent state is 
the first singlet excited state, lBzu, lying at an energy of 4.90 eV 
above the ground state. It may be represented to an excellent 
approximation (see ref. 27) simply as eqn. (7.3.ii) 

Y( 'BZu) = K1- K2 (7.3 .ii) 
i.e. as the negative combination of the two Kekulk structures of 
the ground state. Covalent states are in general fairly easily 
described within the o/x approximation. 

On the other hand, ionic states require linear combinations of 
structures of the type: 

in which two x orbitals occupy one C-atom site, while on the 
neighbouring C atom, there are none. Ionic states of benzene are 
much harder to describe within the o/x framework. Physically, 
it is obvious that this is due, in part, to the existence of positive 
and negative charges in the n-electron distribution, which 
causes a static polarization of the 0 core, so that the core differs 
from that of the covalent states. In addition, there are further 
dynamic o-x interactions which fall outside the o/x approxima- 
tion. In any case, a reliable description of these effects requires 
extensive basis sets which include diffuse atomic orbitals. 

Lastly, there are the Rydberg states. These are characterized 
by one orbital which is very diffuse and extends a significant 
distance from the molecule. Given a basis set which includes 
such diffuse atomic orbitals (even to the extent of centring them 
at the midpoint of the molecule), such states are not too difficult 
to describe well. 

The spin-coupled description of the excited states of benzene 
thus leads to an important and useful classification: the valence 
states are covalent or ionic, the latter being significantly harder 
to describe than the covalent states, and Rydberg states, which 
differ physically from the valence states, but otherwise are not 
difficult to determine accurately. 

In the MO description, all the valence states arise from one or 
two singly excited reference configurations, such as (gu e:g e2J 
or (a$ue:g b2& and it is not at all clear from this why the various 
valence excited states should be so physically distinct. 

The simplest antiaromatic system is cyclobutadiene, C4H4. A 
similar diagram as for benzene for the energies of the molecular 
orbitals of C4H4, assuming a square-planar geometry, gives: 
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from which it follows that the electron configuration of the n 
electrons in the ground state is (a;, ei). However, the eg MO is 
doubly degenerate and according to Hund’s rules, the two 
electrons with this energy will distribute themselves one in each 
MO and with spins aligned parallel. MO theory thus unambigu- 
ously predicts that the ground state of square-planar cyclobuta- 
diene should be a triplet (3Al.J. 

This is not so. It is now well-established that the ground 
electronic state of cyclobutadiene is a singlet. In the square- 
planar geometry (D4h symmetry), the state has the symmetry 
lBlg, with the 3A2g state lying at an energy of ca. 0.43 eV above 
it. Furthermore, the square-plane of the ground state is unstable, 
the molecule preferring to distort to a rectangular geometry with 
two short C-C double bondsnn and two longer C-C single 
bonds. However in the 3A2, state, the square plane geometry is 
stable. 

From the spin-coupled wave function for the ground state, 
one obtains four orbitals of n symmetry without imposing any 
predetermined form on these orbitals, nor on the type of spin 
coupling. Two of the resulting orbitals are shown in Fig. 12. 

I H 

Fig. 12 Orbitals (a) $,; (h)  $2 

They are plotted in a plane parallel to the molecular plane but 
la0 above it. It can be seen that and $2 are centred about the 
two horizontal C atoms, Cl and Cz. Orbitals & and $4 are the 
same as $, and $2, but are rotated by x/2 about the main 
symmetry axis and instead are centred about C3 and C4 in the 
diagram, where C3 lies vertically above C4. We note that orbital 
$2 possesses an extra nodal plane passing through C3-C4, 
compared to $1 (similarly $4 and $3). 

Even more remarkable are the spin couplings, for these show 
that orbitals 42) are almost exactly coupled to a triplet and 
the same holds for ($3, $4), the two triplets coupled to give an 
overall value of the spin S for the four electrons of zero.l((( 
Analysis of how orbitals $,-$4 behave under the operations of 
D4h, shows that the total wave function for the ground state of 
C4H4 has the correct lB1, symmetry. Furthermore, the square 
planar geometry is not stable and the molecule distorts to a 
rectangle. In the course of this distortion, orbitals rapidly 
become localized over the four atoms C1-C4 and clearly show 
the formation of two C-C double bonds which are shorter than 
the remaining two C-C single bonds. 

17 A ‘second order Jahn-Teller instability’. 
I[[( The phrase ‘almost exactly’ is important here (spin coupling coefficients 
0.999865 and 0.0166468), for If (GI ,  $ 2 )  and ($3, $4) were each exactly 
coupled to triplets (with spin coupling coefficients 1.0 and O.O), then the 
overall wave function would remain unchanged by the replacement of 

The four orbitals of the triplet state are remarkably similar to 
those of the singlet ground state. The spin pairing is also very 
similar, orbital pairs ($ 1, $2) and ($3, Q4) each forming a triplet. 
These two triplets, however, are now coupled to form an overall 
triplet, as required for this state. This is found to have an energy 
0.410 eV higher than that of the ground state, which compares 
well with the experimental value of - 0.43 eV (see above). 

It thus appears that antiaromatic character is connected to the 
formation of a triplet spin from a pair of electrons in two distinct 
orbitals, such as and $2 above. We refer to such a 
combination of orbitals as an anti-pair. 

In order to place the concept of anti-pairs found for 
cyclobutadiene within a wider context, several related systems 
were studied, one of which is 2,4-dimethylenecyclobutane- 
1,3-diyl (DMCBD), shown below: 

& b 

This molecule has six electrons in six orbitals of n symmetry (it 
is an isomer of benzene) and can be regarded as being derived 
from C4H4 by removing two H atoms from cyclobutadiene and 
substituting them with methylene groups. From this, one would 
predict that only one of the anti-pairs found in cyclobutadiene 
would remain. This is indeed the case. The ground state of 
DMCBD is a triplet. Orbitals $2) and ($3, 44) are, as 
indicated in the diagram above, four highly localized C(2n) 
orbitals and (together with the appropriate 0 orbitals) form 
normal C-C double bonds. The two remaining orbitals of the C4 
ring, denoted by a and b, form an anti-pair very similar to one 
of those in cyclobutadiene itself. 

Even more remarkable is the bismethylenebiscyclobutyl- 
idene molecule (BBB), shown below. This is similar to 
DMCBD, but with an extra C4 unit, plus methylene group, 
added. 

b d 

Orbitals ($5, +J, ( c $ ~ ,  $8) and (&,, form the n components 
of fairly conventional C-C double bonds. However, while the 
terminal orbitals Q7 and $9 are deformed towards their 
respective partners, $8 and $10, the other orbitals centred on Cg, 
Cg, C8 and Clo are deformed in three directions, due to the 
presence of three C-atom neighbours. 

BBB turns out to have anti-pairs in both C4 rings, i .e.  orbitals 
(a,b) and (c,d). That is, each ring has associated with it a net 
electron spin of S = 1. The spins of the two C4 units, however, 
are aligned antiparallel with each other, giving the ground state 
of BBB a net spin of zero. This is therefore very much akin to 
an antiferromagnetic system, except that the spins stemming 
from each C4 unit each have the value of unity. It is not too hard 
to imagine an organic polymer consisting of an infinite number 
of such C4 units and displaying this kind of antiferromagnetic 
behaviour. 

According to the Hiickel4n rule, cyclooctatetraene (CSHS) is 
the next member of the ‘antiaromatic’ series after cyclobuta- 
diene. Consequently, one would expect that the SC picture of 
bonding in this molecule would, in some way, remind one of 
that observed for C4H4. However, SC calculations recently 
carried out at the lowest-energy tub-shaped 0 2 d  geometry of 
CsHs, as well as at two idealized geometries: a D 8 h  regular 
octagon and a D4h octagon with alternating carbon-carbon bond 
lengths show something different;29 see Fig. 13. 

The eight active orbitals at the D 2 d  and D4h geometries form 
four identical, largely independent olefinic carbon-carbon JC (or 

Chemical Society Reviews, 1997 99 



Dt3h D4h 

D2d 
(view fiom above) 

Fig. 13 

D2d 
(view from side) 

at the tub-shaped geometry, almost n;) bonds. Resonance is 
insignificant (perfect pairing within the bonds represents by far 
the most important spin function) and the conclusion is that, at 
these two geometries which include the one experimentally 
observed, cyclooctatetraene is definitely non-aromatic. Anti- 
aromaticity is restricted to the idealized regular octagonal 
structure. However, the nature of the SC wavefunction at this 
geometry is different from that for cyclobutadiene. The eight 
equivalent SC orbitals are localized and very similar to those in 
benzene; there are no antipairs. The key to the low stability and 
higher reactivity of the molecule-the two main characteristic 
features of antiaromatic systems-is in the spin-coupling 
pattern: in the Serber spin basis, spin functions involving triplet 
pairs are responsible for 81% of the spin function, with 75% 
contributed by a spin function made up of triplet pairs only, 
(((1 , 112; 1) 1; 1). 

The comparison between the SC descriptions of cyclobuta- 
diene, benzene and cyclooctatetraene clearly indicates that the 
reason for the lower stability and higher reactivity of anti- 
aromatic systems is due to a simultaneous unfavourable 
coupling of the spins of all valence orbitals to triplet pairs, 
which discourages bonding interactions and suggests diradical 
character. 

9 Summary and conclusions 
In this short survey we have attempted to describe a range of 
different chemical systems to which spin-coupled theory has 
been applied and, hopefully, demonstrated the clarity and 
freshness of the chemical insights that the theory offers. The 
whole style of description used in this article differs radically 
from that traditionally employed by the more orthodox methods 
of quantum chemistry. 

Inevitably, a different choice of topics could have been made, 
so that those covered fall far short of the many applications so 
far of spin-coupled theory. Among the topics that have been 
quite arbitrarily excluded is the description of degenerate states 
and the study of Jahn-Teller distortions, the application of spin- 
coupled theory to electron-deficient compounds such as the 
boranes, a more detailed account of virtual orbitals and their use 

in refining the ground state wave function and the determination 
of excited states of molecules, intermolecular forces, electro- 
cyclic addition reactions, N-S heterocyclic ring systems and 
charge-transfer collisions in plasmas. 

On the other hand, there still remain many technical 
developments and improvements that could be incorporated 
into the spin-coupled codes. Since these mostly do not involve 
any fundamentally new theory, but straightforward extensions 
of known methods (e.g. gradients, see ref. 28), such develop- 
ments have taken second priority to the wide application of 
spin-coupled theory to many different types of chemical 
systems. 

It has long been considered that the use of non-orthogonal 
orbitals would lead to a formalism of immense complexity, 
which in turn would require computing resources that would 
make such an approach hopelessly inefficient. In fact, we see 
that the opposite is true: the formalism leads to a description of 
molecules and chemical systems that is extremely compact and 
highly visual, and hence long expansions of the wave function 
in terms of different configurations, which obscures all our vital 
insight, are avoided. 

This, finally, is the major success of spin-coupled theory. 
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